Contribution of the Na-K-Cl cotransporter on GABA(A) receptor-mediated presynaptic depolarization in excitatory nerve terminals.

نویسندگان

  • I S Jang
  • H J Jeong
  • N Akaike
چکیده

GABA(A) receptor-mediated responses manifest as either hyperpolarization or depolarization according to the intracellular Cl(-) concentration ([Cl(-)](i)). Here, we report a novel functional interaction between the Na-K-Cl cotransporter (NKCC) and GABA(A) receptor actions on glutamatergic presynaptic nerve terminals projecting to ventromedial hypothalamic (VMH) neurons. The activation of presynaptic GABA(A) receptors depolarizes the presynaptic nerve terminals and facilitates spontaneous glutamate release by activating TTX-sensitive Na(+) channels and high-threshold Ca(2+) channels. This depolarizing action of GABA was caused by an outwardly directed Cl(-) driving force for GABA(A) receptors; that is, the [Cl(-)](i) of glutamatergic nerve terminals was higher than that predicted for a passive distribution. The higher [Cl(-)](i) was generated by bumetanide-sensitive NKCCs and was responsible for the GABA-induced presynaptic depolarization. Thus, GABA(A) receptor-mediated modulation of spontaneous glutamatergic transmission may contribute to the development and regulation of VMH function as well as to the excitability of VMH neurons themselves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence

Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accu...

متن کامل

Nerve Terminal GABAA Receptors Activate Ca2+/Calmodulin-dependent Signaling to Inhibit Voltage-gated Ca2+ Influx and Glutamate Release.

gamma-Aminobutyric acid type A (GABA(A)) receptors, a family of Cl(-)-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for gamma-aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated by GABA(A) receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism...

متن کامل

Na+,K+,2Cl- cotransport and intracellular chloride regulation in rat primary sensory neurons: thermodynamic and kinetic aspects.

Adult primary afferent neurons are depolarized by GABA throughout their entire surface, including their somata located in dorsal root ganglia (DRG). Primary afferent depolarization (PAD) mediated by GABA released from spinal interneurons determines presynaptic inhibition, a key mechanism in somatosensory processing. The depolarization is due to Cl(-) efflux through GABA(A) channels; the outward...

متن کامل

Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury.

After axotomy, application of muscimol, a GABA(A) receptor agonist, induced an increase in intracellular Ca(2+) ([Ca(2+)](i)) in dorsal motor neurons of the vagus (DMV neurons). Elevation of [Ca(2+)](i) by muscimol was blocked by bicuculline, tetrodotoxin, and Ni(2+). In axotomized DMV neurons measured with gramicidin perforated-patch recordings, reversal potentials of the GABA(A) receptor-medi...

متن کامل

Allopregnanolone enhancement of GABAergic transmission in rat medial preoptic area neurons.

Gamma-aminobutyric acid (GABA)-mediated transmission in the medial preoptic area (MPOA) of the hypothalamus plays an important role in functions such as sex steroid hormone dynamics and control of body temperature. The action of allopregnanolone, the primary metabolite of progesterone, on GABAergic transmission was investigated by employing patch clamp whole cell recording on acutely dissociate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 16  شماره 

صفحات  -

تاریخ انتشار 2001